341
CRISPR/Cas and Its Potentiality as an Effective Tool
Dhillon, T., Pearce, S. P., Stockinger, E. J., Distelfeld, A., Li, C., Knox, A. K., et al., (2012).
Regulation of freezing tolerance and flowering in temperate cereals: The VRN-1 connection.
Plant Physiology, 153(4), 1846–1858. doi. org/10.1104/pp.110.159079.
Dubcovsky, J., María, G. S., Epstein, E., Luo, M. C., & Dvořák, J., (1996). Mapping of the
K+/Na+ discrimination locus Kna1 in wheat. Theoretical and Applied Genetics, 92(3, 4),
448–454. doi: 10.1007/BF00223692.
Endo, A., Masafumi, M., Kaya, H., & Toki, S., (2016). Efficient targeted mutagenesis of rice
and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep., 6, 38169.
Endo, M., Mikami, M., & Toki, S., (2016). Biallelic gene targeting in rice. Plant Physiol.,
170, 667–677.
Erpen-Dalla, C. L., Mahmoud, L. M., Moraes, T. S., Mou, Z., Grosser, J. W., & Dutt, M.,
(2019). Development of improved fruit, vegetable, and ornamental crops using the CRISPR/
cas9 genome editing technique. Plants, 8, 601.
Figueroa-Yañez, L., Pereira-Santana, A., Arroyo-Herrera, A., Rodriguez-Corona, U.,
Sanchez-Teyer, F., EspadasAlcocer, J., et al., (2016). RAP2.4a is transported through the
phloem to regulate cold and heat tolerance in papaya tree (Carica papaya cv. Maradol):
Implications for protection against abiotic stress. PLoS One, 11(10), 0165030. doi: 10.1371/
journal.pone.0165030.
Francia, E., Barabaschi, D., Tondelli, A., Laidò, G., Rizza, F., Stanca, A. M., Busconi, M., et al.,
(2007). Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley.
Theoretical and Applied Genetics, 115(8), 1083–1091. doi: 10.1007/s00122-007-0634-x.
Fukao, T., Xu, K., Ronald, P. C., & Bailey-Serres, J., (2006). A variable cluster of ethylene
response factor-like genes regulates metabolic and developmental acclimation responses to
submergence in rice. The Plant Cell, 18, 2021–2034. doi: 10.1105/tpc.106.043000.
Gamuyao, R., Chin, J. H., Pariasca-Tanaka, J., Pesaresi, P., Catausan, S., Dalid, C., et al.,
(2012). The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus
deficiency. Nature, 488(7412), 535–539. doi: 10.1038/nature11346.
Gomez, M. A., Lin, Z. D., Moll, T., Chauhan, R. D., Hayden, L., Renninger, K., Beyene, G.,
Taylor, N. J., Carrington, J. C., Staskawicz, B. J., et al., (2019). Simultaneous CRISPR/
Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava
brown streak disease symptom severity and incidence. Plant Biotechnol. J., 17(2), 421–
434. doi: 10.1111/ pbi.12987.
Hasley, J. A. R., Navet, N., & Tian, M., (2021). CRISPR/Cas9-mediated mutagenesis of sweet
basil candidate susceptibility gene ObDMR6 enhances downy mildew resistance. PLoS
One, 16(6), e0253245.https://doi.org/10.1371/journal. pone.0253245.
Hattori, Y., Nagai, K., Furukawa, S., Song, X. J., Kawano, R., Sakakibara, H., Wu, J., et al.,
(2009). The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to
deep water. Nature, 460(7258), 1026–1030. doi: 10.1038/nature08258.
He, P., Zhao, P., Wang, L., Zhang, Y., Wang, X., Xiao, H., et al., (2017). The PIN gene family
in cotton (Gossypium hirsutum): Genome-wide identification and gene expression analyses
during root development and abiotic stress responses. BMC Genomics, 18, 507. doi:
10.1186/s12864-017-3901-5.
Hsu, P. D., Lander, E. S., & Zhang, F., (2014). Development and applications of CRISPR-Cas9
for genome engineering. Cell, 157, 1262–1278. https://doi.org/10.1016/j.cell.2014.05.010.
Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., et al., (2018). Evolved
Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 556, 57–63.
https://doi.org/10.1038/natur e2615 5.